LECTURE 33 - INTRODUCTION TO PNEUMATICS

SELF EVALUATION QUESTIONS AND ANSWERS

1. If an empty $0.076 \boldsymbol{m}^{\mathbf{3}}$ water system tank on which pressure gauge initially reads $\mathbf{1 . 3 8}$ bar is half filled with water, such as that shown in Figure, what will be the pressure reading on a gauge attached to the tank.

2. If an accumulator using dead weight ballast against an initial volume of $0.025 \mathrm{~m}^{3}$ of a gas is heated from 300 K to 366 K . what volume will the heated gas occupy?

3. The constant volume vessel shown in Figure on which pressure gauge reads $\mathbf{1 3 8}$ bar is heated from 300 K to 395 K , what will the gauge read ?

4. Gas in a $0.025 \mathrm{~m}^{3}$ cylinder at 138 bar is reduced in volume to $0.016 \mathrm{~m}^{3}$. While heated from 297 K to 395 K . what is the final gauge pressure in the cylinder?

5. A fixed quantity of gas, at constant pressure, occupies a volume of 8.50 L and has a temperature of $29^{\circ} \mathrm{C}$. (a) What volume will the gas occupy if the temperature is increased to $125{ }^{\circ} \mathrm{C}$? (b) At what temperature will the volume be 5.00 L ?

Q1 Solution:

Since the temperature is constant, we can use Boyle's Law

$$
\begin{gathered}
p_{1} V_{1}=p_{2} V_{2} \\
p_{2}=p_{1} \times \frac{V_{1}}{V_{2}} \\
p_{2}=2.38 \times \frac{0.076}{0.076 / 2}=4.76 \text { bar }(\text { absoulte }) \\
p_{2}=3.76 \operatorname{bar}(\text { guage })
\end{gathered}
$$

Q2 Solution:

Since the pressure is constant, From Charles law, we have

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

$T_{1}=$ temperature in Kelvin $=300 \mathrm{~K}, T_{2}=366 \mathrm{~K}$

$$
\frac{0.025}{300}=\frac{V_{2}}{366}
$$

Solving we get, $V_{2}=0.0305 \mathrm{~m}^{3}=30500 \mathrm{~cm}^{3}$

Q3 Solution

Since the volume is constant, by applying Gay -Lussac's law, we get,

$$
\left.p_{1}=138 b a r(\text { gauge })=138+1=139 \text { bar (absoute }\right)
$$

$T_{1}=$ temperature in Kelvin $=300 \mathrm{~K}, T_{2}=395 \mathrm{~K}$

$$
\begin{gathered}
\frac{p}{T}=\text { constant or } \frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}} \\
\frac{139}{300}=\frac{p_{2}}{395}
\end{gathered}
$$

Solving we get, $p_{2} \cong 183 \operatorname{bar}($ absoulte $)=182 \operatorname{bar}($ gauge $)$

Q4 Solution

Using General gas law

$$
\begin{gathered}
\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} \\
\frac{139 \times 0.025}{297}=\frac{p_{2} \times 0.016}{395}
\end{gathered}
$$

Solving we get, $p_{2}=288.85 \operatorname{bar}($ absolute $)=287.85 \operatorname{bar}($ gauge $)$

Q5 Solution

Part a

Since the pressure is constant, From Charles law, we have

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

$T_{1}=$ temperature in Kelvin $=29+273=302 \mathrm{~K}, T_{2}=125+273=398 \mathrm{~K}$

$$
\frac{8.5}{302}=\frac{V_{2}}{398}
$$

Solving we get, $V_{2}=11.2 \mathrm{~L}=11200 \mathrm{~cm}^{3}$

Part b

Again rearranging the gas law for constant pressure term, we get

$$
\frac{8.5}{302}=\frac{5}{T_{2}}
$$

Solving we get, $T_{2}=177.65 \mathrm{~K}$

